TRANSACTIONS on COMPUTER RESEARCH

Ovidiu Sicoe, Mircea Popa

On the impact of using mixed real number representations in a
graphics pipeline

OVIDIU SICOE
Politehnica University of Timisoara
Department of Computer Engineering
Timisoara
ROMANIA
ovidiu.sicoe @gmail.com

MIRCEA POPA
Politehnica University of Timisoara
Department of Computer Engineering
Timisoara
ROMANIA
mircea.popa@upt.ro

Abstract: This paper aims to analyse how the accuracy of rendering 3D models on 2D surfaces is affected by using
different real number representation inside different stages of a graphics pipeline. Also, an optimal format that
would not alter the final product in a significant way was a target of our research. Additionally, a great number of
2D projections for each 3D Model is targeted. In order to achieve our goals, we have modified an own software
implementation of the OpenGL ES 1.1 specification so that it could be easily specified which real number formats

are used in each stage.

Key—Words: Fixed-Point, Floating-Point, Graphics pipeline, instrumentation

1 Introduction

Modern graphics processing units(GPUs) used in per-
sonal computers provide huge data throughput[1].
They are general purpose GPUs, designed to perform
in all cases. Improvements can be made by specialized
GPUs, designed to perform for particular applications.
Such GPUs could be implemented using FPGAs[2].

In this paper we analyze the impact of using dif-
ferent formats for representing real numbers along
the stages of a graphics pipeline implemented on a
FPGA. The main goal is performance optimization,
but also resource consumption optimization is in as a
secondary objective.

2 Graphics pipeline

Most of the graphics hardware works based on a mul-
tistage pipeline in which each step is specialized in
doing a certain operation. Initial graphics pipelines
were fixed[3], meaning that the user could use a lim-
ited set of standard transformations that could be ap-
plied to the processed data. Nowadays, the trend is
to make the pipeline more and more flexible[3], al-
lowing more complex effects to be applied during the
data flow.

In order to use and control the graphics pipeline,
certain application programing interfaces(APIs) were
conceived. Two of the most known and used are
OpenGL[4] and DirectX[5]. Those APIs are the in-
terface to the graphic hardware and come as an ab-

E-ISSN: 2415-1521

202

Per-Vertex
Operations

f=—p-] Rasterization =i Per-Fragment_’

Operations Framebuffer

Primitive
Assembly

Figure 1: OpenGL ES 1.1 pipeline[4]

straction of its capabilities. They are implemented in
the driver, thus having little differences between each
vendor.

Being an open specification, OpenGL was
quickly adopted by different platforms and operating
systems, allowing for easy, cross-platform graphics
content deployment. We have chosen to instrument
our own software implementation of the OpenGL ES
1.1 specification due to the simplicity of the concept
and because it targets embedded systems.

Figure 1 presents the main stages of the abstrac-
tion of a graphics pipeline described by the OpenGL
ES 1.1 specification.

In a fixed pipeline, like the one described by
OpenGL ES 1.1 specification, most of the heavy real
number computations happen in the Per-Vertex Oper-
ations stage, mainly implying matrix to matrix or ma-
trix to vector computations[6], followed by the Ras-
terization stage.

The OpenGL ES 1.1 specification allows 3D in-
put objects to be described as triangles(polygons with
three vertices). Figure 2 presents how such an input
object would look like. Its surface is described as be-

Volume 4, 2016

TRANSACTIONS on COMPUTER RESEARCH

ing composed of multiple polygons of different sizes.

o

Figure 2: Polygon based surface of a glass[7]

3 Real numbers representations

Accurate real numbers can not be represented in bi-
nary computers so approximations are used. For this,
there are several formats that suite different needs.
Two of the most known and used are floating-point
format and fixed-point format.

3.1 Fixed-Point numbers

The fixed-point number format always has a given
number of bits for both the fractional part and the
integer part. For example, the number 2.5 can
be represented on a 16:16 format(16 bits for in-
teger part and 16 bits for the fractional part) as
0000000000000010.1000000000000000.

The general rule is that the integer bits have ra-
tios starting from 2° to 2!~!, where i is the number
of integer bits. On the other hand, the fractional bits
have ratios from 27! to 2=/, where f is the number of
fractional bits. This can be better observed in Figure
3.

[ofofofo[ofofo]ofofoofofoo[1]of*0[0]o[0[0]o[0[0[0[0[0[o0]0]0]

2°222°2222222222222222222222222222

Figure 3: Fixed-Point Format

It can be easily observed that the precision of a
fixed-point number is 277, The main advantage of
fixed-point representation is that the operations can
be executed using the integer arithmetic and logic
unit(ALU), so they are faster than the floating-point
operations.

3.2 Floating-Point numbers

For floating point, the point doesn’t have a stationary
position, thus the name floating. The general form of
such a number is depicted in Figure 4.

E-ISSN: 2415-1521

203

Ovidiu Sicoe, Mircea Popa

‘ sign | exponent | mantissa |

Figure 4: Floating-Point Format

The mathematical interpretation of those bits ac-
cording to the IEEE 754 specification[8] is x =
—15%%9" . 1.mantissa - berponent—bias \here b is the
numeration base of the representation and bias is
gsize(exponent) _ 1 Following this, 2.5 is represented
as 0.011111111.01000000000000000000000 as a sin-
gle precision floating-point number.

4 Graphics Pipeline instrumentation

We have conceived a software implementation of the
OpenGL ES 1.1 specification so that we could eas-
ily change the number representation across the logi-
cal stages of the pipeline. For this, we have provided
hooks that are executed at the beginning and at the end
of each stage, respectively.

We have also implemented an abstraction for real
numbers and provided two concrete implementations,
one for fixed point numbers and one for floating point
numbers. This way, we could easily exchange the two
different representations at any point of the execution,
even at runtime.

For the fixed point representation, we have used
5:5, 10:10, 15:15, 16:16, 20:20 and 30:30 formats,
while for the floating point representation, we have
only used the IEEE 754 single precision format, with
the exponent represented on 8 bits and the mantissa
on 23 bits.

We have chosen the following instrumentation
points, according to Figure 1, taking into consider-
ation the operations that were involved in between
them:

e the start of the pipeline, before the Per-Vertex
Operations stage

o after the the Per-Vertex Operations stage and be-
fore the Rasterization

The Per-Vertex Operations stage is the most com-
putation intensive, so we tried to see how a loss in
precision during this stage would influence the final
output. For this, we have considered that the refer-
ence images would be the ones that result from us-
ing the floating point representation across the whole
pipeline. The next steps have been to replace the float-
ing point number format during the Per-Vertex Oper-
ations stage with the fixed point format, taking into
consideration different precisions. Table 1 presents
the resulting combinations that we have used.

Volume 4, 2016

TRANSACTIONS on COMPUTER RESEARCH

Per-Vertex o

0 tions Rasterization

pera
| 1| FP! FP
2 5:5? 5:5
3 10:10 10:10
4 15:15 15:15
5 20:20 20:20
6 30:30 30:30
7 10:10 FP
8 15:15 FP
9 16:16 FP
10 20:20 FP
11 30:30 FP

Table 1: Precision Combinations

For each such combination we have generated
100 images, with the drawn object rotated by two de-
grees around the vector (—1, —1, —1) each frame. For
example, Figure 5a shows the first reference image by
using floating point representation along the complete
pipeline, Figure 5b represents the output of the same
three dimensional model when using 5:5 fixed point
along the pipeline, while 5c depicts the difference be-
tween the two images.

i

(a) FP

(b) 5:5 (c) difference

Figure 5: Frame O images

Additionally, we have created difference images
for each fixed point image, relative to the floating
point counterpart, as briefly depicted in Figure 5.

From this first round of generated images, we
have isolated several formats, based on their accuracy
loss that we would further use in order to extend the
analysis:

e complete 10:10 fixed point across the pipeline
e complete 16:16 fixed point across the pipeline
e complete 30:30 fixed point across the pipeline

e 16:16 fixed point combined with floating point

'Floating Point
2Fixed point format precision as integer size : fraction size

E-ISSN: 2415-1521

204

Ovidiu Sicoe, Mircea Popa

|| 3D Model Polygons
1 | ArrowCookieCutter 233
2 | Bulldozer 7013
3 | Dice 280
4 | FirstTrophy 238
5 | House 1406
6 | Jack-O-Lantern 1668
7 | Model 24302
8 | PlusCookieCutter 312
9 | Rocket 21827
10 | Six 3932
11 | SoccerTrophy 13652
12 | SpaceShuttle 17859
13 | SpookyTree 5776
14 | TrainCarCaboose 2484
15 | TrainEngine 3940
16 | TrophyBase5 1222

Table 2: Used Objects

For the second round, we have mainly generated
extra images, following the same big scenario: ro-
tate the 3D model by two degrees around the vector
(=1, —1,—1) each frame. The main difference is that
this time we have taken into consideration more ob-
jects and we have rendered 180 frames for each one,
so that we have finally achieved a complete 360 degree
rotation. The used objects as well as their characteris-
tics are presented in Table 2. A visual representation
of those objects is presented in Table 3 from Appendix
A.

5 Results

In the first phase, we have generated for a 3D model,
using the precision combinations from Table 1 a total
of 1100 images. By analysing those images, we have
chosen two combinations that would yield big differ-
ences and two that would produce more accurate re-
sults, in order to see how they would behave on other
models.

In the second phase, we have generated projec-
tions of the sixteen 3D models presented in Table 2 by
using our instrumented pipeline. During this phase,
we have generated a total of 11520 images, a total of
720 for each input object, by using four real numbers
format combinations.

All the results we have obtained had shown that
a full use of fixed point numbers across the complete
pipeline would need a rather big increase in the size
of the format, the 30:30 format being the only one that

Volume 4, 2016

TRANSACTIONS on COMPUTER RESEARCH

AAAAAA

uuuu

o

200000

100000 | ‘
o ML

10_10 16 16_FP 30_30
ArrowCookieCutter Bulldozer Dice
FirstTrophy m House JackOLantem

m Mode m PlusCookieCutter m Rocket
m 5ix m SoccerTrophy m SpaceShuttle
SpookyTree TrainCarCaboose TrainEngine

TrophyBases

Figure 6: Chart for pixel difference using the four
mentioned formats

20
o I I IIII

16_FP 30_30
ArrowCookieCutter Bulld ozer Dice
FirstTrophy m House JackOLantern

H Model W PlusCookieCutter W Rocket

o5 m SoccerTrophy m SpacesShuttle
SpookyTree TrainCarCaboose TrainEngine
TrophyBase5

Figure 7: Detailed chart for pixel difference using
30:30 and 16:16 with floating point

E-ISSN: 2415-1521

Ovidiu Sicoe, Mircea Popa

A

(a) FP (b) 30:30

(c) difference

Figure 8: Frame 30 images

provided results almost identical to the original full FP
rendering, as depicted in Figure 8. Although the Fig-
ure 8c seems black, not highlighting any difference,
there are actually 8 pixels different. To support this,
the chart in Figure 6 presents the differences in pixels
obtained for each 3D model by using the various for-
mats. This only highlights that the small sized fixed
point formats used across the whole pipeline yield
great output differences, although they are somehow
dependant on the configuration of the model, not nec-
essarily on its size. The same figures suggest that the
rendering of a compact model, with fewer irregular-
ities is more appropriate for a pipeline using a small
sized fixed point representation.

As depicted in Figure 5 and sustained by the chart
in Figure 6, the differences are quite significant, so
we tried to find a tradeoff between the output accu-
racy and the used formats presented in Table 1. The
output difference images pointed out that the formats
presented at line 9 in the same Table 1 would yield
outputs pretty close to the original floating point im-
ages. The only fixed point format that behaves better
is the 30:30, but that means a big increase in the mem-
ory footprint; actually real numbers of double size. To
enhance this, the chart in Figure 7 presents a more de-
tailed situation that can not be observed in Figure 6
because the values are too small. The average differ-
ence for the 16:16 fixed point combined with floating
point for all the models is 35.46, while the average
difference for full 30:30 fixed point usage is 8.64.

To sustain the idea that a pipeline using the mixed
16:16 and floating point formats produces an accept-
able output Figure 9 presents the biggest difference
produced by this pipeline relative to the image pro-
duced by a full floating point pipeline.

6 Conclusions

We succeeded in comparing the outputs of a graph-
ics pipeline that used different real number represen-
tations, either in a single format across the whole
pipeline, either using mixed fixed and floating point
representations along the stages.

Volume 4, 2016

TRANSACTIONS on COMPUTER RESEARCH

Figure 9: Biggest difference produced by the pipeline
using mixed 16:16 fixed point and floating point

One of the main conclusions is that the best mix
of real number representations across the pipeline,
without a significant increase in resources, but still
providing a result similar to the original output, that
would not be noticeable by the human eye, would
be represented by a 16:16 fixed point representation
being used in the Per-Vertex Operations stage and a
floating point format being involved in the Rasteriza-
tion and onward stages.

Another conclusion is that for the graphics
pipeline to be accurate when using a fixed point rep-
resentation across all the stages, this representation
would have to be somewhere around 64 bits in size,
meaning an increased memory footprint. Although
this would represent a bigger resource consumption,
it may come with a performance improvement since
integer operations are generally faster and easier to
implement.

One of the drawbacks of our OpenGL ES 1.1 soft-
ware implementation is that it doesn’t allow to mea-
sure realistic times of execution for the different for-
mats, as the algorithms are software implemented and
would differ substantially from the hardware imple-
mented counterparts.

One of the other conclusion that we drew is that
although using small sized fixed point formats along
the stages yields outputs significantly different from
the reference images, for a particular shape of the in-
put 3D model, they are not so bad.

As a future analysis, it would be interesting to de-

E-ISSN: 2415-1521

206

Ovidiu Sicoe, Mircea Popa

termine a threshold in the value of the density of pixels
from the difference image that would highlight a sig-
nificant difference for the bare human eye, relatively
to the reference image.

References:

[1] V. W. Lee, C. Kim, J. Chhugani, M. Deisher,
D. Kim, A. D. Nguyen, N. Satish, M. Smelyan-
skiy, S. Chennupaty, P. Hammarlund, R. Singhal,
and P. Dubey, “Debunking the 100x GPU vs.
CPU myth: an evaluation of throughput com-
puting on CPU and GPU,” in 37th International
Symposium on Computer Architecture (ISCA
2010), June 19-23, 2010, Saint-Malo, France,
A. Seznec, U. C. Weiser, and R. Ronen, Eds.
ACM, 2010, pp. 451-460. [Online]. Available:
http://doi.acm.org/10.1145/1815961.1816021

S. Franchini, A. Gentile, F. Sorbello, G. Vassallo,
and S. Vitabile, “An embedded, fpga-based com-
puter graphics coprocessor with native geometric

algebra support,” Integration, vol. 42, no. 3, pp.
346-355, 20009.

(2]

D. P. Luebke and G. Humphreys, “How
gpus work,” IEEE Computer, vol. 40,
no. 2, pp. 96-100, 2007. [Online]. Available:
http://dx.doi.org/10.1109/MC.2007.59

[4] T. K. G. Inc, “Opengl ES
Common/Common-Lite Profile Specification,”
https://www.khronos.org/registry/gles/specs11.

Microsoft,
ing,”

“DirectX Graphics and Gam-
https://msdn.microsoft.com/en-

us/library/windows/desktop/ee663274(v=vs.85).aspx.

J. F. Hughes, A. van Dam, M. McGuire, D. F.
Sklar, J. D. Foley, S. K. Feiner, and K. Akeley,
Computer Graphics: Principles and Practice (3rd
Edition). Addison-Wesley, 2013.

A. H. Watt, 3D Computer Graphics with Cdrom,
3rd ed. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1999.

P. W. Markstein, “The new IEEE-754 standard
for floating point arithmetic,” in Numerical Vali-
dation in Current Hardware Architectures, 6.1.
- 11.1.2008, ser. Dagstuhl Seminar Proceedings,
A. A. M. Cuyt, W. Krdmer, W. Luther, and
P. W. Markstein, Eds., vol. 08021. Interna-
tionales Begegnungs- und Forschungszentrum
fir Informatik (IBFI), Schloss Dagstuhl,
Germany, 2008. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2008/1448

Volume 4, 2016

TRANSACTIONS on COMPUTER RESEARCH Ovidiu Sicoe, Mircea Popa

A 3D Models

(a) ArrowCutter (b) Bulldozer

S
)

>4

(e) House (h) PlusCookieCutter

LT

(i) Rocket () Six (k) SoccerTrophy

(m) SpookyTree (n) TrainCarCaboose (o) TrainCarEngine (p) TrophyBase5

Table 3: 3D Models

E-ISSN: 2415-1521 207 Volume 4, 2016

